光谱型子空间聚类算法成功的关键点是寻求重建系数矩阵,这些矩阵可以忠实地揭示数据集的子空间结构。理想的重建系数矩阵应该具有两个属性:1)它是块对角线,每个块指示一个子空间; 2)每个块完全连接。尽管已经提出了各种光谱类型子空间聚类算法,但这些算法构建的重建系数矩阵中仍然存在一些缺陷。我们发现,归一化成员矩阵自然满足上述两个条件。因此,在本文中,我们设计了一种基本表示(IDR)算法来追求近似归一化成员矩阵的重建系数矩阵。 IDR设计了重建系数矩阵的新的IDEMTOTENT约束。通过将双随机约束结合在一起,可以直接实现与归一化构件矩阵封闭的系数矩阵。我们提出了用于解决IDR问题的优化算法,并分析其计算负担和收敛性。 IDR和相关算法之间的比较显示IDR的优势。对合成和现实世界数据集进行的大量实验证明,IDR是一种有效而有效的子空间聚类算法。
translated by 谷歌翻译
With the increased usage of AI accelerators on mobile and edge devices, on-device machine learning (ML) is gaining popularity. Thousands of proprietary ML models are being deployed today on billions of untrusted devices. This raises serious security concerns about model privacy. However, protecting model privacy without losing access to the untrusted AI accelerators is a challenging problem. In this paper, we present a novel on-device model inference system, ShadowNet. ShadowNet protects the model privacy with Trusted Execution Environment (TEE) while securely outsourcing the heavy linear layers of the model to the untrusted hardware accelerators. ShadowNet achieves this by transforming the weights of the linear layers before outsourcing them and restoring the results inside the TEE. The non-linear layers are also kept secure inside the TEE. ShadowNet's design ensures efficient transformation of the weights and the subsequent restoration of the results. We build a ShadowNet prototype based on TensorFlow Lite and evaluate it on five popular CNNs, namely, MobileNet, ResNet-44, MiniVGG, ResNet-404, and YOLOv4-tiny. Our evaluation shows that ShadowNet achieves strong security guarantees with reasonable performance, offering a practical solution for secure on-device model inference.
translated by 谷歌翻译
通用的对抗扰动(UAP)是不可察觉的,图像敏捷的矢量,引起深度神经网络(DNNS),从而从具有很高概率的数据分布中误分类输入。现有方法不会为转换创造强大的UAPS,从而将其适用性限制为现实世界攻击。在这项工作中,我们介绍了一个新的概念和强大的普遍对抗性扰动的表述。基于我们的公式,我们构建了一种小说,迭代算法,该算法利用了概率的鲁棒性界限来生成UAPS,以与通过组成任意亚差异性转换功能生成的转换产生鲁棒。我们对流行的CIFAR-10和ILSVRC 2012数据集进行了广泛的评估,该数据集测量了人类解剖性语义转换(例如旋转,对比变化等)在现实世界中常见的鲁棒性。我们的结果表明,我们生成的UAP比基线的UAP更强大。
translated by 谷歌翻译
兴趣点检测是计算机视觉和图像处理中最根本,最关键的问题之一。在本文中,我们对图像特征信息(IFI)提取技术进行了全面综述,以进行利益点检测。为了系统地介绍现有的兴趣点检测方法如何从输入图像中提取IFI,我们提出了IFI提取技术的分类学检测。根据该分类法,我们讨论了不同类型的IFI提取技术以进行兴趣点检测。此外,我们确定了与现有的IFI提取技术有关的主要未解决的问题,以及以前尚未讨论过的任何兴趣点检测方法。提供了现有的流行数据集和评估标准,并评估和讨论了18种最先进方法的性能。此外,还详细阐述了有关IFI提取技术的未来研究方向。
translated by 谷歌翻译
Bootstrap aggregating (Bagging) and boosting are two popular ensemble learning approaches, which combine multiple base learners to generate a composite model for more accurate and more reliable performance. They have been widely used in biology, engineering, healthcare, etc. This paper proposes BoostForest, which is an ensemble learning approach using BoostTree as base learners and can be used for both classification and regression. BoostTree constructs a tree model by gradient boosting. It increases the randomness (diversity) by drawing the cut-points randomly at node splitting. BoostForest further increases the randomness by bootstrapping the training data in constructing different BoostTrees. BoostForest generally outperformed four classical ensemble learning approaches (Random Forest, Extra-Trees, XGBoost and LightGBM) on 35 classification and regression datasets. Remarkably, BoostForest tunes its parameters by simply sampling them randomly from a parameter pool, which can be easily specified, and its ensemble learning framework can also be used to combine many other base learners.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译